Исследование и разработка методов нефотореалистичной визуализации для реализации графической библиотеки реального времени Часть 6

Обзор технологий, позволяющих реализовать общие вычисления на графическом процессоре

Развитие вычислительных технологий последние десятки лет шло быстрыми темпами. Настолько быстрыми, что уже сейчас разработчики процессоров практически подошли к так называемому «кремниевому тупику» [19]. Рост частот универсальных процессоров упёрся в физические ограничения и высокое энергопотребление, и увеличение их производительности всё чаще происходит за счёт размещения нескольких ядер в одном чипе. Продаваемые сейчас процессоры содержат лишь до четырёх ядер (дальнейший рост не будет быстрым). Каждое ядро работает отдельно от остальных, исполняя разные инструкции для разных процессов.

Однако если посмотреть в сторону графических процессоров GPU (Graphics Processing Unit), то там по пути параллелизма пошли гораздо раньше. В сегодняшних видеокартах, например в GF8800GTX, число процессоров может достигать 128. Самое главное — эти несколько ядер мультипроцессора в GPU являются SIMD (одиночный поток команд, множество потоков данных) ядрами [9]. И эти ядра исполняют одни и те же инструкции одновременно, такой стиль программирования является обычным для графических алгоритмов и многих научных задач, но требует специфического программирования. Зато такой подход позволяет увеличить количество исполнительных блоков за счёт их упрощения. Производительность подобных систем при умелом их программировании может быть весьма значительной (рисунок 17).

Рисунок 17. График увеличения производительности CPU и GPU во времени

Сравнение производительности центрального и графического процессора.

Итак, перечислим основные различия между архитектурами CPU и GPU. Ядра CPU созданы для исполнения одного потока последовательных инструкций с максимальной производительностью, а GPU проектируются для быстрого исполнения большого числа параллельно выполняемых потоков инструкций. Универсальные процессоры оптимизированы для достижения высокой производительности единственного потока команд, обрабатывающего и целые числа и числа с плавающей точкой. При этом доступ к памяти случайный.

Разработчики CPU стараются добиться выполнения как можно большего числа инструкций параллельно, для увеличения производительности. Для этого, начиная с процессоров Intel Pentium, появилось суперскалярное выполнение, обеспечивающее выполнение двух инструкций за такт, а Pentium Pro отличился внеочередным выполнением инструкций. Но у параллельного выполнения последовательного потока инструкций есть определённые базовые ограничения и увеличением количества исполнительных блоков кратного увеличения скорости не добиться.

У видеочипов работа простая и распараллеленная изначально. Видеочип принимает на входе группу полигонов, проводит все необходимые операции, и на выходе выдаёт пиксели. Обработка полигонов и пикселей независима, их можно обрабатывать параллельно, отдельно друг от друга. Поэтому, из-за изначально параллельной организации работы в GPU используется большое количество исполнительных блоков, которые легко загрузить, в отличие от последовательного потока инструкций для CPU [9].

GPU отличается от CPU ещё и по принципам доступа к памяти. В GPU он связанный и легко предсказуемый — если из памяти читается тексель текстуры, то через некоторое время придёт время и для соседних текселей. Да и при записи то же — пиксель записывается во фреймбуфер, и через несколько тактов будет записываться расположенный рядом с ним. Поэтому организация памяти отличается от той, что используется в CPU. Таким образом видеочипу, в отличие от универсальных процессоров, просто не нужна кэш-память большого размера, а для текстур требуются лишь несколько (до 128-256 в нынешних GPU) килобайт.

Да и сама по себе работа с памятью у GPU и CPU несколько отличается. Так, не все центральные процессоры имеют встроенные контроллеры памяти, а у всех GPU обычно есть по несколько контроллеров, вплоть до восьми 64-битных каналов в чипе NVIDIA GT200 [9]. Кроме того, на видеокартах применяется более быстрая память, и в результате видеочипам доступна в разы большая пропускная способность памяти, что также весьма важно для параллельных расчётов, оперирующих с огромными потоками данных.

В универсальных процессорах большие количества транзисторов и площадь чипа идут на буферы команд, аппаратное предсказание ветвления и огромные объёмы начиповой кэш-памяти. Все эти аппаратные блоки нужны для ускорения исполнения немногочисленных потоков команд. Видеочипы тратят транзисторы на массивы исполнительных блоков, управляющие потоками блоки, разделяемую память небольшого объёма и контроллеры памяти на несколько каналов. Вышеперечисленное не ускоряет выполнение отдельных потоков, оно позволяет чипу обрабатывать нескольких тысяч потоков, одновременно исполняющихся чипом и требующих высокой пропускной способности памяти.

Про отличия в кэшировании. Универсальные центральные процессоры используют кэш-память для увеличения производительности за счёт снижения задержек доступа к памяти, а GPU используют кэш или общую память для увеличения полосы пропускания. CPU снижают задержки доступа к памяти при помощи кэш-памяти большого размера, а также предсказания ветвлений кода. Эти аппаратные части занимают большую часть площади чипа и потребляют много энергии. Видеочипы обходят проблему задержек доступа к памяти при помощи одновременного исполнения тысяч потоков — в то время, когда один из потоков ожидает данных из памяти, видеочип может выполнять вычисления другого потока без ожидания и задержек.

Есть множество различий и в поддержке многопоточности. CPU исполняет 1-2 потока вычислений на одно процессорное ядро, а видеочипы могут поддерживать до 1024 потоков на каждый мультипроцессор, которых в чипе несколько штук. И если переключение с одного потока на другой для CPU стоит сотни тактов, то GPU переключает несколько потоков за один такт [18].

Кроме того, центральные процессоры используют SIMD (одна инструкция выполняется над многочисленными данными) блоки для векторных вычислений, а видеочипы применяют SIMT (одна инструкция и несколько потоков) для скалярной обработки потоков. SIMT не требует, чтобы разработчик преобразовывал данные в векторы, и допускает произвольные ветвления в потоках [9].

В итоге можно сказать, что в отличие от современных универсальных CPU, видеочипы предназначены для параллельных вычислений с большим количеством арифметических операций. И значительно большее число транзисторов GPU работает по прямому назначению — обработке массивов данных, а не управляет исполнением немногочисленных последовательных вычислительных потоков. На рисунке 18 представлена схема того, сколько места в CPU и GPU занимает разнообразная логика:

Рисунок 18.Сравнение CPU и GPU по их структуре.

В итоге, основой для эффективного использования мощи GPU в научных и иных неграфических расчётах является распараллеливание алгоритмов на сотни исполнительных блоков, имеющихся в видеочипах. К примеру, множество приложений по молекулярному моделированию отлично приспособлено для расчётов на видеочипах, они требуют больших вычислительных мощностей и поэтому удобны для параллельных вычислений. А использование нескольких GPU даёт ещё больше вычислительных мощностей для решения подобных задач.

Выполнение расчётов на GPU показывает отличные результаты в алгоритмах, использующих параллельную обработку данных. То есть, когда одну и ту же последовательность математических операций применяют к большому объёму данных. При этом лучшие результаты достигаются, если отношение числа арифметических инструкций к числу обращений к памяти достаточно велико. Это предъявляет меньшие требования к управлению исполнением, а высокая плотность математики и большой объём данных отменяет необходимость в больших кэшах, как на CPU.

Рассмотрим технологии, которые позволяют реализовывать ресурсоёмкие вычисления на графическом процессоре.

Сравнение технологии шейдеров с технологией nVidia CUDA

Когда первые видеокарты только появились в продаже, они представляли собой достаточно простые (по сравнению с центральным процессором) узкоспециализированные устройства, предназначенные для того чтобы снять с процессора нагрузку по визуализации двухмерных данных. С развитием игровой индустрии и появлением таких трехмерных игр возникла необходимость в 3D визуализации. Со времени создания компанией 3Dfx первых видеокарт Voodoo, (1996 г.) и вплоть до 2001 года в GPU был реализован только фиксированный набор операций над входными данными [19]. У программистов не было никакого выбора в алгоритме визуализации, и для повышения гибкости появились шейдеры — небольшие программы, выполняющиеся видеокартой для каждой вершины либо для каждого пиксела. В их задачи входили преобразования над вершинами и затенение — расчет освещения в точке. В настоящий момент шейдеры получили очень сильное развитие, но следует понимать, что они были разработаны для узкоспециализированных задач трехмерных преобразований и растеризации.

Сегодня появилась тенденция нетрадиционного использования видеокарт для решения задач в областях квантовой механики, искусственного интеллекта, физических расчетов, криптографии, физически корректной визуализации, реконструкции по фотографиям, распознавания и.т.п. Эти задачи можно решать в рамках графических API (DirectX, OpenGL), но это неудобно так как эти API создавались совсем для других применений.

Развитие программирования общего назначения на GPU (General Programming on GPU, GPGPU) логически привело к возникновению технологий, нацеленных на более широкий круг задач, чем растеризация. В результате компанией Nvidia была создана технология Compute Unified Device Architecture (или сокращенно CUDA), а конкурирующей компанией ATI — технология STREAM.

Следует заметить, что на момент написания этой статьи, технология STREAM сильно отставала в развитии от CUDA, и поэтому здесь она рассматриваться не будет. Проведём сравнение двух технологий вычисления задач на GPU это технология шейдеров и CUDA.

Реклама
Запись опубликована в рубрике Диплом. Добавьте в закладки постоянную ссылку.

Добавить комментарий

Заполните поля или щелкните по значку, чтобы оставить свой комментарий:

Логотип WordPress.com

Для комментария используется ваша учётная запись WordPress.com. Выход / Изменить )

Фотография Twitter

Для комментария используется ваша учётная запись Twitter. Выход / Изменить )

Фотография Facebook

Для комментария используется ваша учётная запись Facebook. Выход / Изменить )

Google+ photo

Для комментария используется ваша учётная запись Google+. Выход / Изменить )

Connecting to %s